Cosmological parameter analyses using transversal BAO data
نویسندگان
چکیده
منابع مشابه
Fast cosmological parameter estimation using neural networks
We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of ...
متن کاملCosmological Constraints from Hubble Parameter versus Redshift Data
We use the Simon, Verde, & Jimenez (2005) determination of the redshift dependence of the Hubble parameter to constrain cosmological parameters in three dark energy cosmological models. We consider the standard ΛCDM model, the XCDM parameterization of the dark energy equation of state, and a slowly rolling dark energy scalar field with an inverse power-law potential. The constraints are restric...
متن کاملCosmological parameter estimation with large scale structure and supernovae data
Most cosmological parameter estimations are based on the same set of observations and are therefore not independent. Here, we test the consistency of parameter estimations using a combination of large-scale structure and supernovae data, without cosmic microwave background (CMB) data. We combine observations from the IRAS 1.2 Jy and Las Campanas redshift surveys, galaxy peculiar velocities and ...
متن کاملParameter Fitting of Cosmological Models using Evolutionary Strategies
The current tools used for approximating cosmological parameters are Markov Chain Monte Carlo (MCMC) utilities using Metropolis-Hastings and Nested Sampling as the main sampling methods. These tend to have low sampling efficiency as many samples are wasted in trying to find good proposals of points at high regions of likelihood. In the data-rich era in which cosmology is entering, imaging the e...
متن کاملA thermodynamic assessment of the BaO-MgO, BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Rui Zhang, Pekka Taskinen Name of the publication Publisher School of Chemical Technology Unit Department of Materials Science and Engineering Series Aalto University publication series SCIENCE + TECHNOLOGY 4/2014 Field of research Metallurgy
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2020
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/staa2036